程序员修真之路

〖程序员修真之路〗

第200章 混沌动力学

上一页 简介 下一页

KdV方程于是就被成为了孤立子方程。

孤立子问题一出现后,就马上引起了人们的广泛。

因为人们发现,孤立子方程可以描写许多自然现象的数学物理基本方程。

最后经过许多数学家的努力后,才发展出一套“散射反演方法”,成功解出孤立子方程。

程理也正是用“散射反演方法”解答了第2996层的问题。

孤立子在非线性波理论、基本粒子理论等领域有着广泛而重要的作用。

它的发现是数学导致重大科学发现的一个例证。它表明,数学作为现代科学方法的三大环节(理论、实验、数学)之一,已经并将进一步在当代基础理论、应用技术等许多方面发挥重要作用。

现在人们已经发现很多在应用中十分重要的非线性方程,如正弦-戈登方程、非线性薛定谔方程等都具有这种孤立子解。

人们还发现在等离子体光纤通讯中也有孤立子现象,科学家们还认为,神经细胞轴突上传导的冲动、木星上的红斑等都可以看做是孤立子。

所以,孤立子方程,也是通

不过,问题并没有就这样结束。

随着物理学的发展,人们对各种波的研究加深后。

很多人又开始对孤立波进行了进一步研究。

然后,人们发现:两个不同的孤立波在碰撞后,仍表现为两个形状不变的孤立波,然后在碰撞交错后,仿佛什么事情都没发生一样,继续朝着自己原来路线前进着。

于是,人们把这种两个孤立波相撞后保持不变的现象,称之为“孤立子”

(本章未完,请点击下一页继续阅读)

第200章 混沌动力学 (第2/3页)

变……”拉塞尔在做出这样的描述时,还抱怨当时的数学家,并未提供能在数学上对这种孤立波描述的工具。

直到1895年,荷兰数学家科特维格才给出了孤立波现象的数学模型,一个非线性偏微分方程,这个方程也被成为KdV方程。

KdV方程虽然被提出,但是以当时的数学水平却无法解出这个方程。

于是关于KdV方程的研究在半个多世纪里,就这样停滞不前。

阅读程序员修真之路最新章节 请关注凡人小说网(www.washuwx.net)

上一页 目录 下一页 存书签

相关推荐